

Human Induced Rapid Environmental Change (HIREC)

Humans have left their mark on pretty well every ecosystem

Invasive species

Climate change

Land-use change

Pollution

http://www.foe.co.uk/

Environmental Goods and Services

An example of environmental goods and services

Groundwater in the Credit River Watershed

- ~90,000 people rely on groundwater for drinking water
- It would cost ~\$100 million a year to pump, treat, and store water from Lake Ontario to replace the groundwater resource

Phosphorus

We greatly increased the amount of available phosphorus with important consequences for primary production

Eutrophication (increased algal production in lakes)

Water Quality Concerns Among Lake Users

Non-linear Ecosystem Response

Phosphorus has been accumulating for years, why the abrupt change in water quality?

high Water quality low high low **Nutrients**

Critical Transitions in Nature and Society Marten Scheffer

Ecosystems can display a threshold response

Nutrients

Multiple Ecosystem Stressors

Research component of the OTF

Research objective:

 Determine the probable driver(s) of the reported increase in algal concentrations and macrophyte biomass in eastern Ontario

We are examining 3 possible drivers

1) Nutrient loading

2) Climate change

3) Invasive species

The need for long-term data

- Needed to know the magnitude and speed by which humans have altered ecosystems
- Needed to set realistic restoration targets

Zebra mussels first detected in great lakes in late 80's

Nutrient enrichment started to take off in the 50's and 60's

Environmental impacts occur over multiple spatial and temporal scales

Sediments: environmental archives

Lake Sediments: Natural Environmental Archives

Lake Sediments:

- Continuous record of environmental change over thousands of years
- Chronology based on radio-isotope analysis (²¹⁰Pb, ¹³⁷Cs, ¹⁴C)
- Preserves a physical, chemical, and biological record of both aquatic and terrestrial environments

Can provide insight into:

- 1) Water and sediment quality
- 2) Water quantity
- 3) Vegetation
- 4) Climate
- 5) and many other ecosystem components

Research component of the OTF

Research questions:

1) How much have phosphorus and algae concentrations changed from "natural" conditions?

Research component of the OTF

Research questions:

- 2) What are the important controls on algal and macrophyte abundance in eastern Ontario?
 - Spatial survey of 20 lakes in the RVCA and MVCA watersheds (10 lakes in year 1 and 10 lakes in year 2)
 - Lakes were selected over a nutrient gradient
 - Study lakes includes those with and without zebra mussels
 - Study lakes are part of the CA monitoring programs

Macrophyte Sampling

Research component of the OTF

Research questions:

- 3) Is climate warming related to increased algae and macrophytes?
 - Detailed sediment core analysis of 3 lakes
 - Lakes will be selected over a nutrient gradient
 - Study lakes will have similar size, mean depth, and be part of the CA monitoring program

20 study lakes

Bobs (Green Bay)

Burridge

Crosby

Bobs (Buck Bay)

Christie

Otty

Long Pond

Tommy

Adam

Upper Rideau

Mosque

Malcolm

Shabomeka

Clayton

Bennett

Dalhousie

Big Gull

Kashwakamak

Pine

Sharbot (East basin)

Sediment core analysis

- All 20 study lakes have been cored
- Samples are currently being processed for diatom analysis
- 4 Honours students are working on this project (plan to have diatom IDed before start of winter semester)
 - Alex Crew
 - Emily Barrie
 - Sharon Odongo
 - Kathryn Sweet
- 4 Work-study students are helping with the lab work
 - Evan
 - Idil
 - Carly
 - Aisha

Daverh ADAMS 73 lakes were cored

Macrophyte and algae analysis

- 10 study lakes have been sampled
- Samples are currently being analyzed
- Macrophyte biovolume assessed using echosounder
- Colonial algae noted during sampling along with presence of invasive macrophytes

Percent Area Covered by Macrophytes

Percent Biovolume of Macrophytes

(% of water column occupied by plants)

Citizen Science Website and App

"The picture's pretty bleak, gentlemen. ... The world's climates are changing, the mammals are taking over, and we all have a brain about the size of a walnut."

Luckily our brains are about the size of a cantaloupe not a walnut!

Once we have identified a problem we can begin to take action to solve it.

Integrated Watershed Monitoring Program

- Data collection began in 1999
- Mandate of reporting on ecosystem health, baseline conditions and long-term trends
- Land-use and climate change are the dominant stressors on the watershed

Increasing percent urban land use

Trends in ecosystem health

Evidence for improving ecosystem health at the subwatershed scale

Slater St. 1913 (Downtown Ottawa) Slater St. 2013

Warren 4 months old

Thomas 4 months old

Humans are changing the world quickly and this level of change is unprecedented.

Anthropocene: A proposed geological time period where earth system processes have been altered by humans

Growing consensus that we have entered this new geological epoch debate is largely about when it started