Science by the People, For the Lakes

Frank Figuli – Program Coordinator Jack Scott – Water Quality Coordinator

CENTRE FOR COMMUNITY-BASED RESEARCH

U-Links Centre for Community-Based Research

Who We Are

- A part of the Haliburton County Community Co-Operative
- Not for Profit Contributing to Haliburton County since 1999
- Broker Research Opportunities between Haliburton County organizations and post-secondary students
- Research in Cultural, Social, Economic and Environmental Sectors
- ~3000 students have participated in more than 600 Research Projects (www.ulinks.ca)

Research is Driven from the Bottom Up within the Community

U-Links Centre for Community-Based Research

Examples of Past Projects

- Shoreline Evaluation research on the Kennisis Lakes (2010/2011) led to Watersheds Canada offered Love Your Lake program, executed locally by the C.H.A.
- **Benthic Biomonitoring Research** on Kushog Lake led to development of WWEW Program, unique to Haliburton County
- **Microplastics** in Haliburton County Lakes
- Light Pollution on Cottage Lakes
- Wetlands research to investigate Provincially Significant Wetland status eligibility for Grace Lake Association
- Illegal Dumping in Haliburton County, led to Online Reporting and 'hot spot' signage
- Machine Learning Model to Identify Critical Tributaries in Harcourt Park

Water Quality Monitoring in Haliburton County

Why Aquatic Monitoring is Critical for Haliburton County

- High Lake Density with Limited Baseline Data
- Limited Stewardship Capacity
- Cumulative Impacts of Development and Climate Change
- Headwater Lakes Require Greater Sensitivity
- Local Data with Broader Applications
- Community Engagement as a Strategic Tool

Woodlands and Waterways EcoWatch (WWEW)

Developed to fill an environmental data gap in Haliburton County

Water Quality Monitoring

- Benthic Biomonitoring Using Benthic
 Macroinvertebrates as biological indicators
- Testing the Waters Using physical and chemical indicators to evaluate the lake health

Terrestrial Monitoring

 Long-term monitoring for changes in forest health over time (disease, pests, effects of climate change)

WOODLANDS & WATERWAYS EcoWatch

U-Links Water Quality Monitoring

Monitoring Locations as of 2024 (Post Expansion)

Legend

- Biological Monitoring
- Chemical/Physical Monitoring
- Chemical/Physical/Biological Monitoring

Paudash Lake

10 km

Bear Lake Harvey Lake Stocking Lake Little Kennisis Lake Kennisis Lake Paddys Bay Redstone Lake Big Hawk Lake Little Hawk Lake Kabakwa Lake Halls Lake

Boshkung Lake

Twelve Mile Lake

Kashagawigamog Lake

Koshlong Lake

Bob Lake

Gull Lake

Moore Lake East Moore Lake

Davis Lake

Google Earth

inage © 2025 Maxar Technologies Image Landsat / Copernicus Image © 2025 CNES / Airbus Image © 2025 Airbus

via Laka

Haliburton Lake Percy Lake

Allen Lake Spruce Lake Drag Lake Spruce Lake Drag Lake Grass Lake Miskwabi Laktwenona Lake Long Lake Cedar Lake Little Glamor Lake

Glamor Lake

Gooderham Lake

WWEW Program Sustainability

- Community Driven = Long-Term Buy-In
- Multiple Program Streams
- Special Grant Projects
- Post Secondary Institution Collaborations
- Stable Haliburton County Support
- Strong Academic Integration
- Build-In Knowledge Sharing
- Scalable, Replicable Model

WWEW Citizen Scientist Model

Lake Associations Participation

Using Biological Indicators for Water Quality Health

Why Benthics?

- Benthic Macroinvertebrates (or "benthics") serve as reliable indicators of aquatic ecosystem health
- Living in direct contact with sediments and water for extended periods, they are exposed to wide range of chemical and physical stressors
- Certain species are **highly sensitive to pollution**, population numbers help detect impacts from <u>nutrient loading</u>, <u>habitat disturbance</u>, or <u>organic</u> <u>contamination</u>.

Benthic Biomonitoring has been used across Canada since the early 2000's and is an established part of **national biomonitoring programs**

They are not the only biological indicator used – but strike a sweet spot

- Limited Mobility
- Multi-Year Life Cycle
- Taxonomic Diversity
- Widespread Distribution
- Low Tech and Cost Effective Sampling

Photo Credit: Aaron Belanger – Environmental Resource Science, 2025

OBBN Benthic Sites, 2019

WWEW Benthic Sites, 2025

Establishing Baselines in Benthic Monitoring

	Lake	Average %EOT	Rank	Percentile	
	Little Glamour Lake	30.45%	1	100.00%	
	Kawagama Lake	27.45%	2	95.00%	
 Tracking Ecological Baselines 	Koshlong Lake	25.02%	3	90.00%	
	Kennisis Lake	21.72%	4	85.00%	
 Tracking Change Over Time 	Glamour Lake	21.36%	5	80.00%	
	Bear Lake	20.41%	6	75.00%	
 Measuring Cumulative Impacts 	Little Boshkung Lake	18.16%	7	70.00%	
	Haliburton Lake	17.47%	8	65.00%	
Site-Specific Sensitivities	Grace Lake	16.54%	9	60.00%	
, Informa a Dalian, Ctannardalain 9	Long Lake	15.65%	10	55.00%	
 Informs Policy, Stewardship & 	Negaunee Lake	15.24%	11	50.00%	
Conservation	Big Hawk Lake	14.18%	12	45.00%	
	Bob Lake	11.33%	13	40.00%	
 Foundational for Integrated 	Little Hawk Lake	9.65%	14	35.00%	
Lake Health Reporting	Halls Lake	9.61%	15	30.00%	
Eakerheattintepoliting	Gull Lake	9.09%	16	25.00%	
	Kashagawigamog Lake	8.73%	17	20.00%	
	Twelve Mile Lake	8.11%	18	15.00%	
	Wenona Lake	7.72%	19	10.00%	
	Harvey Lake	7.43%	20	5.00%	
	Miskwabi Lake	6.69%	21	0.00%	

Table Produced By: Aaron Belanger – Environmental Resource Science, 2025

Testing the Waters Program

Physical and Chemical Indicators for Water Quality Health

Testing the Waters Program

A Haliburton County Wide Comprehensive Water Quality Monitoring Program

- 61 Sites across 39 Lakes in Partnership with 25 Lake Associations
- Standardized, Region Specific Protocols
- Lake Association Volunteer Supported
- Seasonal, Multi-Site Data Collection
- Actionable Reporting for Stewardship
- Expanding Capacity for Long-Term Trend Analysis

Prog	ram Overv	/iew – By	y the Nu	umbers		
2022	- Present					
>6600						
Physical W	Q					
Measureme	nts					
	>2900 Water					
	Chemistry					
	Samples	>1300				
		Volunteer				
		Hours	>200			
			Training	> 150	39 Lakes	25 Lake
			Hours	Volunteers	61 <u>Locatio</u> ns	Associations
						Stage Owner

Sampling Protocol – Parameters Measured

PARAMETER MEASURED	Lake Partner Program	MECP - Trout Lake Monitoring	MNDMNRF Broad Scale Monitoring	KLCOA (LPP + Internal Data)	Testing the Waters Haliburton County WQ Monitoring	
FREQUENCY	1 Sampling/Year	Every ~5-8 Years 2 Samplings/Year	4-6 Year Cycles for Select Lakes	1-2 Samplings/Year	3 Samplings/Year	
Secchi Depth (m) (Clarity)	YES	YES	YES	YES	YES	
Total Phosphorus	YES	YES	YES	YES	YES	
Nitrogen - Ammonia	NO	YES	YES	YES	YES	
Nitrogen - Nitrite	NO	YES	YES	YES	NO	
Nitrogen - Nitrate+Nitrite	NO	YES	YES	YES	YES	
Total Kjeldahl Nitrogen	NO	YES	YES	NO	YES	
Sulphate	NO	NO	YES	NO	YES	
Dissolved Organic Carbon	NO	YES	YES	NO	NO	
Dissolved Inorganic Carbon	NO	YES	YES	NO	NO	
pН	NO	YES	YES	NO	YES	
Total Alkalinity	NO	YES	YES	NO	YES	
Conductivity (uS/cm)	NO	YES	YES	NO	YES	
Calcium	YES	YES	YES	YES	NO	
Magnesium	NO	YES	YES	NO	NO	
Hardness	NO	YES	YES	NO	YES	
Total Suspended Solids	NO	YES	YES	NO	NO	
Total Dissolved Solids	NO	YES	YES	NO	NO	
Dissolved Oxygen	NO	YES	YES	YES	YES	
Temperature	NO	YES	YES	YES	YES	
Chloride	YES	NO	YES	YES	NO	
Bacterial Contamination						
E. Coli	NO	NO	NO	NO	NO	
Total Coliforms	NO	NO	NO	NO	NO	

3 Samples/Year July/Sept/Winter – Ice On

Unique Feature: Below-ice winter sampling directed to lakes with water drawdowns, known to be detrimental to certain ecological processes in lakes.

Data Use – Trend Analysis

Little Kennisis Lake - Total Phosphorus (mg/l) (2002-2024)

Microplastics Analysis

Jacob Wyonch – ENLS Graduate Student – Trent University

Programming Challenges

Operational Challenges

- Volunteer Turnover & Retraining
- Scheduling Difficulties
- Property Access
- Maintaining QA/QC Across LA's

Environmental & Logistic Challenges

- Inconsistent Ice Conditions
- Storms and Water Levels
- Limited or Unreliable Boat Access
- Site-Specific Constraints for Benthic Sampling
- Not all Lakes Safely Accessible During
 Winter

Future Outlook and Closings

Moving From Monitoring to Management

Program Trajectories

Expanding Digital Tools

New Parameters on the Horizon

Scaling Through New Partnerships

Opportunities for Engagement

Thank You

to all volunteers, partners and supporters.

Zygoptera Consulting

Questions?

Frank Figuli – Program Coordinator coordinator@ulinks.ca

Jack Scott – Water Quality Coordinator wq@ulinks.ca

